
 

GEATbx com 

Genetic and Evolutionary Algorithm Toolbox for Matlab 
 
 
 
 
 
 
 
 
 
 

GEATbx Tutorial 
 
 
 

by: 
Hartmut Pohlheim 

 
 
 
 
 
 
 
 
 
 

GEATbx version 3.8 
(December 2006) 

 
www.geatbx.com 

support@geatbx.com 





Contents 

1  Introduction ..................................................................................................... 1 

2  Quick Start....................................................................................................... 3 
2.1  First demonstration......................................................................................................... 3 
2.2  Second demonstration .................................................................................................... 6 
2.3  Your first optimization of an own objective function .................................................... 7 
2.4  Further Steps................................................................................................................... 9 

3  Writing Objective Functions ........................................................................ 11 
3.1  Parametric optimization functions................................................................................ 11 
3.2  Defining default values of the objective function ........................................................ 12 
3.3  Optimization of dynamic systems ................................................................................ 13 
3.4  Remark ......................................................................................................................... 15 

4  Variable Representation ............................................................................... 17 
4.1  Conversion between Variable Representations ............................................................ 17 
4.2  Examples of Variable Representation .......................................................................... 18 

4.2.1 Real --- Real...............................................................................................................................18 
4.2.2 Real (phenotype) --- Binary (genotype) .....................................................................................18 
4.2.3 Integer (phenotype) --- Integer (genotype) or Binary (genotype) ..............................................18 
4.2.4 Binary --- Binary........................................................................................................................18 

4.3  Simultaneous Use of Multiple Representations ........................................................... 19 
4.3.1 Integer and Binary (phenotype) --- Integer (genotype)..............................................................19 
4.3.2 Real and Integer and Binary (phenotype) --- Integer (genotype)...............................................19 

5  Overview of GEA Toolbox Structure.......................................................... 21 
5.1  Naming Convention...................................................................................................... 21 
5.2  Calling Tree .................................................................................................................. 23 
5.3  Demo / Startup function ............................................................................................... 23 
5.4  Toolbox functions (Predefined algorithms).................................................................. 24 
5.5  Evolutionary Algorithm - Main function ..................................................................... 24 

5.5.1 Initialization...............................................................................................................................24 
5.5.2 Generational loop of the EA ......................................................................................................25 
5.5.3 Fitness assignment by ranking...................................................................................................25 

www.geatbx.com  GEATbx Tutorial 



5.5.4 Selection.....................................................................................................................................25 
5.5.5 Recombination/Crossover..........................................................................................................25 
5.5.6 Mutation.....................................................................................................................................26 
5.5.7 Evaluation..................................................................................................................................27 
5.5.8 Reinsertion .................................................................................................................................28 
5.5.9 Migration ...................................................................................................................................28 
5.5.10 Competition................................................................................................................................28 
5.5.11 Visualization ..............................................................................................................................28 

5.6  Utility functions............................................................................................................ 28 

6  Multi-objective Optimization in the GEATbx............................................ 31 
6.1  Switch on multi-objective ranking ............................................................................... 31 
6.2  Visualization of multi-objective solutions.................................................................... 31 
6.3  Definition of goals in objective functions .................................................................... 32 
6.4  Archive - collect and reinsert good solutions ............................................................... 32 

7  Constraint Optimization in the GEATbx ................................................... 33 
7.1  Constraining the variables ............................................................................................ 33 
7.2  Functional constraints................................................................................................... 33 

7.2.1 Functional constraints using additional objectives and goals ...................................................34 
7.2.2 Implementation of functional constraints (larger than, >=)......................................................34 
7.2.3 Implementation of functional constraints (smaller than, <=)....................................................35 
7.2.4 Implementation of functional constraints (equal to, ==)...........................................................35 

8  Data Structures of the GEATbx .................................................................. 37 
8.1  Chromosomes (genotype / individuals)........................................................................ 37 
8.2  Phenotypes (decision variables / individuals) .............................................................. 37 
8.3  Objective function values ............................................................................................. 38 
8.4  Fitness values................................................................................................................ 38 
8.5  Multiple subpopulations ............................................................................................... 39 

9  How to Approach new Optimization Problems ......................................... 41 
9.1  Classifying the Problem and Defining the Objective Function.................................... 42 
9.2  Investigating the System Behavior ............................................................................... 42 

One and Two-dimensional Slices (Variational Diagrams)......................................................................43 
Multi-dimensional Visualization .............................................................................................................44 
Decreasing the System Size/Dimension...................................................................................................45 

9.3  Selecting the Optimization Method.............................................................................. 45 
9.4  Executing and Evaluating Optimizations ..................................................................... 46 

 

GEATbx Tutorial  www.geatbx.com 



List of Figures iii 

List of Figures 
Fig. 2-1: Output in Matlab command window at start of optimization run (used options) ................3 
Fig. 2-2: Status information displayed in command window during optimization (some lines 

removed) ..............................................................................................................................4 
Fig. 2-3: Graphical output during optimization..................................................................................4 
Fig. 2-4: Result information displayed in command window at the end of the optimization 

(some parts have been removed) .........................................................................................4 
Fig. 2-5: Demonstration demogeatbx: option selection in menu (top: objective function, 

bottom: evolutionary algorithm to apply) ............................................................................6 
Fig. 2-6: Definition of objective function objexample1 .....................................................................7 
Fig. 2-7: Definition of options, size of the problem (number of variables) and execution of 

optimization .........................................................................................................................7 
Fig. 2-8: Definition of a larger number of variables and with extended boundaries ..........................8 
Fig. 2-9: Graphical output during optimization of first own objective function ................................8 
Fig. 3-1: Definition of an objective function....................................................................................11 
Fig. 3-2: Definition of special return values of an objective function..............................................12 
Fig. 5-1: Layer model of the GEATbx .............................................................................................21 
Fig. 5-2: Calling tree of the Genetic and Evolutionary Algorithm Toolbox (GEATbx) ..................23 
Fig. 9-1. Procedure for solving optimization problems using evolutionary algorithms ...................41 
Fig. 9-2. Structure of the system to be optimized as objective function ..........................................42 
 
 

List of Tables 
Tab. 4-1: Combinations of variable representation and conversion ..................................................17 
Tab. 5-1: Naming convention of the GEATbx..................................................................................22 
 
 

www.geatbx.com  GEATbx Tutorial 





 

1  Introduction 

The GEATbx (Genetic and Evolutionary Algorithm Toolbox for use with Matlab) contains a 
broad range of tools for solving real-world optimization problems. They not only cover pure op-
timization, but also the preparation of the problem to be solved, the visualization of the optimiza-
tion process, the reporting and saving of results, and as well as some other special tools. 
This Tutorial provides an introduction to the main GEATbx functions. The steps necessary for the 
efficient application of the GEATbx are explained. Nevertheless, this tutorial does not and cannot 
cover all the functions and aspects of the GEATbx. (Remember, you can always refer to the im-
plemented code.) 
The first steps for a 'Quick Start' are described in Chapter 2, p.3 and some examples are given. 
You can try these examples immediately and see the results seconds later. The examples use 
some of the GEATbx demos, giving a head start to those eager to try out the GEATbx. 
From there on you have at least two ways of proceeding with this tutorial. 
When using the GEATbx you need to know how to implement your problem ('Writing Objective 
Functions'). The procedure for doing so is described in Chapter 3, p.11. 
Another important aspect which must be considered is the format of the 'Variable Representation', 
see Chapter 4, p.17. 
The structure of the GEATbx is described in 'Overview of GEA Toolbox Structure' in an explana-
tion of the 'Calling Tree' of the functions, see Chapter 5, p.21. A brief overview of the intercon-
nection between the GEATbx functions is also provided in this chapter. The GEATbx functions 
follow a 'Naming Convention', see Section 5.1, p.21. 
Multi-objective optimization is fully integrated into the standard behavior of the GEATbx. The 
additional aspects to switch it on and control it are explained in Chapter 6, p.31. 
The 'Data Structures of the GEATbx' are documented in Chapter 8, p.37. 
All the direct algorithm documentation is done inside the Matlab m-files (help 
name_of_m_file). An extensive help text is provided for each function explaining the purpose 
and syntax and including illustrative examples. The M-function index (only in the on-line docu-
mentation) contains this information and additionally the dependencies between the functions 
(which function calls which other functions). 
Years of work using the GEATbx to solve real-world problems has shown us, amongst other 
things, that the approach to new optimization problems is always one of the most important as-
pects. Chapter 9, p.41, 'How to Approach new Optimization Problems', explains a number of tips 
and steps. 
If any part of the documentation does not address your problem, you can always contact the tech-
nical support for the GEATbx by email (support@geatbx.com). 

www.geatbx.com  GEATbx Tutorial 





 

2  Quick Start 

The Genetic and Evolutionary Algorithm Toolbox (GEATbx) provides a number of demos. All 
these functions are called demo*.m (for instance demofun1). The demo-functions provide ready-
to-run examples and can be called directly after the installation. All necessary parameters are al-
ready set. 

2.1  First demonstration 

As a first example, run the first demonstration function in Matlab: 
 demofun1; 

This demo defines a number of evolutionary algorithm options, starts the optimization, displays 
the EA options employed on the screen (see figure 2-1), optimizes the objective function 
objfun1, returns intermediate information during the optimization in the Matlab command win-
dow (see figure 2-2 and 2-4), and visualizes the results graphically every few generations (see fig-
ure 2-3). The output on your screen might be slightly different, but the examples below give you 
a general idea of the output visualization. Below the output figures some of the options inside 
demofun1 are explained. 

Fig. 2-1: Output in Matlab command window at start of optimization run (used options) 

Evolutionary Optimization 
Objective function:  objfun1       Date: 22-Dec-2005     Time: 22:12:66 
   number of variables:   10 
   boundaries of variables:        -512  
                                    512  
Evolutionary algorithm parameters: 
   subpopulations =      4       individuals =     25   (at start per subpopulation) 
   termination    1:  max. generations = 400;  
   variable format =    0   (real values - phenotype == genotype) 
   selection 
         function = selsus 
         pressure =    1.7   
         gen. gap =    0.9   
      reinsertion 
             rate =      1   
   recombination 
         name = recdis  recdis  reclin  recdis 
         rate =      1   
   mutation 
           name = mutreal 
           rate =      1   
          range =    0.1    0.01   0.001  0.0001   
      precision =     16   
   regional model 
      migration 
            rate =   0.1    interval =   20  
   output 
      results on screen every  5  generation 
      grafical display of results every  10  generation 
         method = 111111 
         style  = 614143 

www.geatbx.com  GEATbx Tutorial 



4 2  Quick Start 

Fig. 2-2: Status information displayed in command window during optimization (some lines removed) 
Generation   f-Count     Obj. Function          Term: 1        Time: cpu/gen,  full     
    5.           451             40519          [   1.25%]     (  0.00min  00:00:02)    
   10.           888             30140          [   2.50%]     (  0.00min  00:00:03)    
   15.          1331             12935          [   3.75%]     (  0.00min  00:00:06)    
   20.          1776            8572.8          [   5.00%]     (  0.00min  00:00:06)    
   25.          2217            4910.8          [   6.25%]     (  0.00min  00:00:08)    
   30.          2660            3644.4          [   7.50%]     (  0.00min  00:00:09)    
   35.          3100            2414.4          [   8.75%]     (  0.00min  00:00:11)    
   40.          3540            1210.6          [  10.00%]     (  0.00min  00:00:11)    
   45.          3979            678.95          [  11.25%]     (  0.00min  00:00:13)    
   50.          4418            208.31          [  12.50%]     (  0.00min  00:00:14)    
 
  200.         17636       1.1752e-005          [  50.00%]     (  0.00min  00:00:54)    
  205.         18076       8.6381e-006          [  51.25%]     (  0.00min  00:00:56)    
  210.         18516       8.6179e-006          [  52.50%]     (  0.00min  00:00:57)    
  215.         18956       5.6262e-006          [  53.75%]     (  0.00min  00:00:58)    
  220.         19396       4.2513e-006          [  55.00%]     (  0.00min  00:00:59)    
 
  370.         32604       4.4879e-008          [  92.50%]     (  0.00min  00:01:38)    
  375.         33044       3.9711e-008          [  93.75%]     (  0.00min  00:01:40)    
  380.         33484       3.4701e-008          [  95.00%]     (  0.00min  00:01:41)    
  385.         33928       3.2459e-008          [  96.25%]     (  0.00min  00:01:42)    
  390.         34368       3.1356e-008          [  97.50%]     (  0.00min  00:01:43)    
  395.         34808       1.4482e-008          [  98.75%]     (  0.00min  00:01:45)    
  400.         35248       1.4482e-008          [ 100.00%]     (  0.00min  00:01:46)    

Fig. 2-3: Graphical output during optimization  

 

Fig. 2-4: Result information displayed in command window at the end of the optimization (some parts have 
been removed) 

End of optimization: max. generations (400 generations; 1.78 time minutes) 
Best Objective value:  1.44825e-008   in Generation 393 
Best Individual:   -2.734e-005  -1.4079e-005   2.419e-005 -2.9976e-005  
                  -2.8788e-005   9.4641e-005 -1.3272e-005  3.2009e-005 
                   2.7127e-005  -1.8188e-005  

GEATbx Tutorial  www.geatbx.com 



2.1  First demonstration 5 

A number of options are defined in demofun1. Most of these options are not really necessary for 
a first demo function. However, you can use this function as a template. Let's have a look at some 
of the options. 
The first step provides us with the default parameters for real valued parameters. More informa-
tion can be found at Predefined Evolutionary Algorithms (in Parameter options). 

% Get default parameters for real variables 

GeaOpt = tbx3real; 

The second step is to set number of subpopulations (here 5 subpopulations) and number of indi-
viduals per subpopulation (here a different number for each subpopulation, 50 individuals for the 
first subpopulation, 30 individuals in the second subpopulation and so on). Another useful pa-
rameter defines, how often textual status information is displayed during an optimization (here 
every 5 generations). 

% Define special parameters 
GeaOpt = geaoptset( GeaOpt ... 
           , 'NumberSubpopulation',   5 ...  
           , 'NumberIndividuals',   [50, 30, 20, 20, 10] ...  
           , 'Output.TextInterval',   5 ...  
          ); 

The definition of the objective function is quite important. Here we use one of the many example 
objective functions of the GEATbx, objfun1 implementing the hyper sphere function. The ob-
jective function is implemented in an m-function. Thus, we simply provide the name of this m-
function: 

% Define objective function to use 

objfun = 'objfun1'; 

All the example objective functions of the GEATbx not only contain the definition of the func-
tion, but also all the necessary parameters for the application of the function: boundaries of the 
variables (VLUB: vector of lower and upper bounds), a short textual description, the best objec-
tive value (when known), and the corresponding variable values. Thus, the GEATbx can always 
"ask" the current objective function for the parameters needed. A gateway function to access 
these parameters is provided. 

% Get variable boundaries from objective function 

VLUB = compdiv('getdata_objfun', objfun, 1); % GEATbx v.3.3 

VLUB = geaobjpara(objfun, 1); % GEATbx v.3.4 and newer 

A full description of the gateway into the objective functions is given in 'Writing Objective Func-
tions', Chapter 3, p.11. 
Now all options are defined. Thus, the evolutionary algorithm implemented in geamain2 can be 
called: 

% Start optimization 

[xnew, GeaOpt] = geamain2(objfun, GeaOpt, VLUB); 

During the optimization status information and visualization output are displayed on the screen 
(see figure 2-2, 2-4, and 2-3). 
If you want to have a look at the search space of the objective function (visualizing the first 2 di-
mensions): 

% Do a mesh plot of the objective function 

plotmesh(objfun, [-100,-100;100,100]); 

www.geatbx.com  GEATbx Tutorial 



6 2  Quick Start 

2.2  Second demonstration 

In order to give an impression of the utility of the GEATbx, a demonstration implementing 3 dif-
ferent evolutionary algorithms and calling many of the example objective functions is provided. 
Call the demonstration in the Matlab command window: 

 demogeatbx(1,1); 

This call optimizes the objective function objfun1 with a 'Globally oriented optimization (with 
multiple subpopulations)' nearly identical to the implementation in demofun1. 

When the demonstration is called without parameters, you can select one of the available options 
from a text menu. The first menu provides a selection of at least 16 different objective functions. 
The second menu offers 3 different evolutionary algorithms (see figure 2-5, bottom). 

Fig. 2-5: Demonstration demogeatbx: option selection in menu (top: objective function, bottom: evolu-
tionary algorithm to apply) 

» demogeatbx 
--- Please select objective function to use ---- 
      1) Sphere function (objfun1) 
      2) ROSENBROCKs function (objfun2) 
      3) RASTRIGINs function (objfun6) 
      4) SCHWEFELs function (objfun7) 
      5) GRIEWANGKs function (objfun8) 
      6) Sum of different power (objfun9) 
      7) ACKLEYs path function (objfun10) 
      8) LANGERMANNs function (objfun11) 
      9) MICHALEWICZs function (objfun12) 
      10) Axis parallel ellipsoid (objfun1a) 
      11) Rotated ellipsoid (objfun1b) 
      12) Moved axis parallel ellipsoid (objfun1c) 
      13) Live optimization (objlive1, 2 dim) 
      14) Live optimization (objlive1, 10 dim) 
      15) FONSECAs MO function 1 (mobjfonseca1) 
      16) FONSECAs MO function 2 (mobjfonseca2) 
Select a menu number: 1 
 
--- Please select the optimization method to use! ---- 
      1) Globally oriented optimization (multiple subpops) 
      2) Globally oriented optimization (1 subpop) 
      3) Locally oriented optimization 
Select a menu number: 1 

Using this demonstration function you can explore many of the provided objective functions. 
Each of the objective functions has different properties. Thus, for each objective function the 3 
evolutionary algorithms behave differently. For instance, try the following combinations: 

demogeatbx(1,2);     demogeatbx(1,3); 
demogeatbx(2,3);     demogeatbx(2,1); 
demogeatbx(12,2); 
demogeatbx(5,1);     demogeatbx(5,3); 

The options of the evolutionary algorithms employed are displayed in the Matlab command win-
dow at the beginning of the optimization. However, the first 2 evolutionary algorithms ('Globally 
oriented optimization', most options defined in tbx3real) differ only in the number of subpopu-

GEATbx Tutorial  www.geatbx.com 



2.3  Your first optimization of an own objective function 7 

lations employed. Both of these use 200 individuals. The third evolutionary algorithm ('Locally 
oriented optimization') uses an evolution strategy as the mutation operator and no recombination. 
It works with only 12 individuals. A few other options are also different. Most of the options of 
this evolutionary algorithm are set inside tbx3es1. 

2.3  Your first optimization of an own objective function 

Up to now you have only used the demonstration and objective functions provided. It is time to 
write your first objective function. Let's implement a simple quadratic function with a moved cen-
ter. 
An implementation of the x^2 function with a moved minimum point to [4, 8, 12, ...] is given in 
figure 2-6. Save these lines in an m-file with the name objexample1.m. Now the objective func-
tion is defined. 

Fig. 2-6: Definition of objective function objexample1  

function ObjVal = objexample1(Chrom) 
   % Compute population parameters 
   [Nind, Nvar] = size(Chrom); 
   % Move the center of the minimum 
   Chrom = Chrom - 4 * repmat([1:Nvar], [Nind, 1]); 
   % Calculate the objective values 
   ObjVal = sum((Chrom .^2)')'; 

In the command window you can now set a few optimization options before you start the optimi-
zation (all other options are taken from the set of default options). These lines can also be written 
to an m-file creating your own demo example and executing this m-file. 
As an example, set the interval of text output to every 3 generations. The second option results in 
an update of the graphical output every 9 generations. The optimization stops after half a minute 
(termination method 2 is maximal time in minutes). Using the new objective function and the 
special options you can call the evolutionary algorithm. Here we also provide the number of vari-
ables or dimensions of the objective function  (4 variables by defining 4 lowerand 4 upper 
bounds) and the boundaries of these variables (-50 and 50). 

Fig. 2-7: Definition of options, size of the problem (number of variables) and execution of optimization  

% Define special parameters 
GeaOpt = geaoptset( 'Output.TextInterval',    3 ...  
                  , 'Output.GrafikInterval',  9 ...  
                  , 'Termination.MaxTime',  0.5 ...  
                  , 'Termination.Method',     2); 

 

VLUB = [-50,-50,-50,-50; 50,50,50,50]; 

geamain2('objexample1', GeaOpt, VLUB) 

Using these few lines the optimization is executed and results are shown in the command window 
(text output) and the graphical result figure. At the end of the run the result is given in the com-
mand window (similar to figure 2-4, p.4). 
The same objective function can easily be optimized for 15 variables/dimensions or more. To do 
so simply define a larger number of variable boundaries. Now the objective value can only reach 

www.geatbx.com  GEATbx Tutorial 



8 2  Quick Start 

a minimum of 140. The boundaries for the higher dimensions do not allow the (unbounded) 
minimal value to be found. You must therefore call the evolutionary algorithm again with ex-
tended/changed boundaries. 

Fig. 2-8: Definition of a larger number of variables and with extended boundaries 

% Define 15 variables 

VLUB = repmat([-50; 50], [1, 15]); 

geamain2('objexample1', GeaOpt, VLUB) 
 

% Define different boundaries 

VLUB = repmat([-12; 123], [1, 15]); 

geamain2('objexample1', GeaOpt, VLUB) 

An impression of the graphical output during optimization is given in figure 2-9. 

Fig. 2-9: Graphical output during optimization of first own objective function 

 

These are the graphics which default options provided. The top left graph presents the best objec-
tive value during the last 40 generations (and the standard deviation of all objective values). The 
top middle graph visualizes the variables of the best individual over the last 40 generations. Out 
of the chaos at the beginning, an order seems to emerge and you can try to interpret the results. 
The top left graph shows all the objective values (to be exact only 85% of the best of each genera-
tion) over the last 40 generations. A very interesting graph is presented on the bottom left: all the 
variables of all the individuals of the current generation. You can clearly see the order in the vari-
able values. The bottom middle graph shows the objective values of the individuals of the current 
generation and the bottom right graph the order of the subpopulations (both will be explained at a 
future date). 

GEATbx Tutorial  www.geatbx.com 



2.4  Further Steps 9 

During optimization the graphical output changes quite substantially. Thus, the graphic in fig-
ure 2-9 is just a snapshot. If, however, you follow the changing display during optimization you 
will soon gain a good insight into the course and the state of the current optimization. 

2.4  Further Steps 

The examples shown will be sufficient for your first steps using the GEATbx. Have a look at the 
scripts subdirectory of your geatbx3 installation. This directory contains further demo func-
tions – see the respective help text for more information. 
The next step is to learn about 'Writing Objective Functions', see Chapter 3, p.11, and how to 
handle the different 'Variable Representation' in the objective function and the evolutionary algo-
rithm, see Chapter 4, p.17. 
For an 'Overview of GEA Toolbox Structure' and more information on the 'Calling Tree' of the 
toolbox, see Chapter 5, p.21. 

www.geatbx.com  GEATbx Tutorial 





 

3  Writing Objective Functions 

When using the toolbox the implementation of an objective function consumes most of the work. 
Inside this function the calculation of the objective values depending on the variables is per-
formed. Here you must implement your problem! The kind of implementation determines how 
good the evolutionary algorithm can work on and solve the problem. 
Included in the distributed version of the toolbox are many examples of objective functions. All 
included objective functions follow the naming convention obj*.m (see also Naming Convention, 
Section 5.1, p.21). These functions implement a broad class of parameter optimization problems 
(and a few ordering/scheduling problems). When using these functions as a template it will be 
easier to implement your own functions/problems. For an overview of the mathematical descrip-
tion see EXAMPLES OF OBJECTIVE FUNCTIONS. 
Consider the following tasks: 

1. The objective function is called with a matrix with as many rows as individuals. Every 
row corresponds to one individual. The number of columns determines the dimension/the 
number of variables of the objective function (see also Data Structures of the GEATbx, 
Chapter 8, p.37). 

2. Because of being called with many individuals the objective function calculates the same 
mathematical expressions more than once. This could be done in a for-loop. However, here 
is a highly recommended place for vectorization. 

3. Beside calculating the objective values the objective function could be used for defining 
default values (boundaries: lower and upper bounds of the variables, a default dimension 
of the problem; additionally, a descriptive string (name of the objective function) for label-
ing plots and, if known, the minimal objective value; for multi-objective problems the num-
ber of objective values). 

3.1  Parametric optimization functions 

Let's finish the theory. Here is an example. 
Consider implementing the simple quadratic function (sum of quadrate or bowl function; known 
as DE JONG's function 1 - objfun1). This functions works on real value variables. 

Fig. 3-1: Definition of an objective function  

function objval = objfun1(x) 
   objval=sum((x.*x),2);   % vectorized, thus fast 
   % for i=1:size(x,1), objval(i)=sum(x(i,:).^2); end 

objfun1 returns the objective values of all individuals and because of the vectorization it will be 
fast. The second line (commented) shows the implementation of this function unvectorized. Every 
individual will be computed separately. The result is the same, however, Matlab takes a consid-
erably longer time. 

www.geatbx.com  GEATbx Tutorial 



12 3  Writing Objective Functions 

A fully documented version of the above objective function is implemented in objfun1. 

Other examples of objective functions (using real value variables, vectorized implementation and 
a definable number of dimensions) are: 

• objfun1a (axis parallel hyper-ellipsoid) 
• objfun1b (rotated hyper-ellipsoid) 
• objfun2 (ROSENBROCK's function) 
• objfun6 (RASTRIGIN's function) 
• objfun7 (SCHWEFEL's function) 
• objfun8 (GRIEWANGK's function) 
• objfun9 (sum of different power) 
• objfun10 (ACKLEY's path) 
• objfun11 (LANGERMANN's function) 
• objfun12 (MICHALEWICZ's function) 

These functions are very often used as a standard set of test functions for evaluation of the per-
formance of different evolutionary algorithms. 

3.2  Defining default values of the objective function 

The next step is defining default values for boundaries (domain of variables), best objective value 
and a description for the function. During the work on the toolbox the following style developed 
and is implemented inside all provided objective functions: Call the objective function with one 
special individual only (first variable is NaN, the optional second defines the type of info re-
quested, for example  x = [NaN, 1]). 

Fig. 3-2: Definition of special return values of an objective function  

function objval = objfun1(x, option) 
   [Nind,Nvar]=size(x); 
   % if Chrom is [NaN xxx] define size of boundary-matrix and others 

   if all([Nind == 1, isnan(Chrom(1))]), 

      % If only NaN is provided 

      if length(Chrom) == 1, option = 1; else option = Chrom(2); end 

      % Default dimension of objective function 

      Dim = 20; 

      % return text of title for graphic output 

      if option == 2, ObjVal = ['DE JONGs function 1']; 

      % return value of global minimum 

      elseif option == 3, ObjVal = 0; 

      % define size of boundary-matrix and values 

      else 

         % lower and upper bound, identical for all n variables 

         ObjVal = repmat([-512; 512], [1 Dim]); 

      end 

   else 

       % Compute objective function 

   end  

The line objfun1([NaN,1]) or objfun1([NaN]) will return the default boundaries (includes im-
plicitly the dimension) of the objective function. This is used inside a number of functions to re-

GEATbx Tutorial  www.geatbx.com 



3.3  Optimization of dynamic systems 13 

trieve the default boundaries and implicitly the number of variables for a given objective func-
tion. 

objfun='objfun1'; 
VLUB = feval(objfun, [NaN, 1]); 

geamain2(objfun, [], VLUB); 

Getting the descriptive name of the objective function (objfun1([NaN,2])) or the minimal ob-
jective value (objfun1([NaN,3])) is not used in the distributed version of the toolbox (because I 
can not guaranty that you write all your objective functions according to this scheme). However, 
when comparing different algorithms and defining a termination criterion against the minimal ob-
jective value it is very useful (and I use it quite often for my own work). 
A fully documented version of the above objective function is implemented in objfun1. 

3.3  Optimization of dynamic systems 

Often the solution of a problem involves the simulation of a system or the call of other functions. 
Consider the optimization of the control vector of a double integrator (push cart system). An 
overview of this system is given in EXAMPLES OF OBJECTIVE FUNCTIONS. 

function objval=objdopi(Chrom,option) 
   [Nind,Nvar]=size(Chrom); 
   XINIT=[0;-1];XEND=[0;0]; 
   TSTART=0; TEND=1;TIMEVEC=linspace(TSTART,TEND,Nvar)'; 
   if Nind==0, 

   % see above example or objdopi 
   else 
      STEP=abs((TEND-TSTART)/(Nvar-1))); 
      for indrun=1:Nind 
         control=[TIMEVEC [Chrom(indrun,:)]']; 

         [t x]=rk23('simdopiv', [TSTART TEND], XINIT, ... 
                    [1e-3,STEP,STEP],control); 
         % Calculate objective function 
         objval(indrun)=sum(abs(x(size(x,1),:)'-XEND))+ ... 
                        trapz(t,Chrom(indrun,:).^2)); 
      end 
   end 

At the beginning of the calculation of the objective values problem specific parameters are de-
fined (XINIT, XEND, TSTART, TEND, TIMEVEC). The direct calculation is done separately for 
every individual (rk23 is written for only one system at one time). Every individual is converted 
in the form required by rk23 (vector of time values in the first column, next column(s) contain 
control values at specified time). The simulation function is called with appropriate parameters, 
the state values are returned. (rk23 is a Matlab4 specific function. The calling and setup of the in-
tegration routine changed under Matlab5 - see help for sim and simset.) 
The objective value is a combination of two terms: 

• sum of all values of the individual (the needed energy/force to change the state of the sys-
tem) and 

• difference between reached and needed end value of the states. 

www.geatbx.com  GEATbx Tutorial 



14 3  Writing Objective Functions 

The objective function is finished. However, there is still another function needed - the s-function 
for the simulation routine simdopiv. (for an introduction to writing s-functions see the Simulink 
reference guide or look at the provided s-functions of the GEATbx sim*.m). 

function [sys,x0]=simdopiv(t,x,u,flag); 
   if abs(flag) == 1 
      sys(1,:) = u(1,:); 
      sys(2,:) = x(1,:); 
   elseif abs(flag)==0 
      sys=[2,0,0,1,0,0]; x0 = [0; -1]; 
   end  

Let's go one step further. The toolbox provides the possibility to pass up to 10 parameters to the 
objective function. In the above example it could be useful to have the chance of changing 
TSTART, TEND, XINIT, XEND from outside and thus optimizing different situations of the dou-
ble integrator system. The beginning of the function would be changed to: 

function objval=objdopi(Chrom,option,TSTART,TEND,XINIT,XEND) 
   [Nind,Nvar]=size(Chrom); 
   if nargin<3, TSTART=0; end 
   if nargin<4, TEND=1; end 
   if nargin<5, XINIT=[0;-1]; end 
   if nargin<6, XEND=[0;0]; end  

The problem specific parameters are checked and if not provided set to default values. Thus, if 
necessary the parameters can be passed to the function or default values will be used. For opti-
mizing objdopi the script would be (implemented in demodopi): 

objfun='objdopi'; 
TSTART=0; TEND=2; XINIT=[0;-2]; XEND=[0;0]; 
tbxmpga(objfun, [], [], 0, TSTART, TEND, XINIT, XEND)  

An even more advanced parameter checking could be done with (example): 
   if nargin<3, TSTART=[]; end 
   if isempty(TSTART), TSTART=0; end 
   if nargin<4, TEND=[]; end 
   if isempty(TEND), TEND=1; end  

The parameter passing mechanism offers the possibility of getting multiple solutions at once 
without editing the objective function: 

   for i=1:10, 
      XINIT=[0;-i]; 
      geamain2(objfun,GeaOpt,VLUB,[],0,[],[],XINIT) 
   end  

Undefined parameters (TSTART, TEND, XEND) will be set to default values - really useful in day to 
day work. 
One problem remains - vectorization. Many simulation problems are not vectorizable and thus 
slow. The evolutionary algorithm spends most of the time calculating the objective values. For 
simulation functions there are actually two problems: The Matlab-provided integration functions 
(rk23, rk45 or sim) are not vectorized. And it's often difficult to vectorize the s-function (see 
sim*.m). However, for this example both of these problems are solved. The s-function simdopiv 
is vectorized and together with the GEATbx a vectorized integration routine, intrk4, is pro-
vided. For more information see the documentation of intrk4 and method=12 inside objdopi. 

If the objective function computes quite a few temporary results that are not part of the objective 
value it is good style to return them as additional output parameters. 

GEATbx Tutorial  www.geatbx.com 



3.4  Remark 15 

function [objval, t, x]=objdopi(...) 

What is the benefit? This opens the possibility of writing problem specific result plotting or spe-
cial result computing routines. An example is implemented for the double integrator, which 
serves at the same time as an example for these features. 

1. special initialization function (initdopi), [provides problem specific knowledge during 
initialization of the population]. 

2. special state plot function (plotdopi), [plot special results for best individual during op-
timization, for instance state and output variables of simulation]. 

For using these features the appropriate GeaOpt parameters (Special.InitDo, 
Special.InitFunction, Output.StatePlotInterval, Output.StatePlotFunction) must be 
defined. When calling the evolutionary algorithm Special.InitDo should be set to 1 and 
Output.StatePlotInterval should be set to 1 or greater. The corresponding *Function options 
contain the manes of the special initialization or state plot functions. The concept of setting the 
parameter in the options structure for using (or not) the special feature and defining the name of 
the special function is very flexible. For every objective function a special function for initializa-
tion or state plot can be defined (every problem needs it’s own initialization or state plot func-
tion). Via parameter the use can be switched on or off. An example of all this is provided with the 
demo function demodopi, the objective function objdopi, the initialization function init-
dopi, and the state plot function plotdopi. 

3.4  Remark 

Two things should be stated at the end: 
• Before starting to write own functions have a look to the provided example functions. It's 

much easier to use one of them as a template than starting from scratch. It is not necessary 
that everybody solves the same problems again and again. 

• If good examples are known, which could be used for introducing a whole class of prob-
lems, please send them to the me (support@geatbx.com). If appropriate they will be in-
cluded into the documentation of the toolbox and this tutorial as an example function. 

 

www.geatbx.com  GEATbx Tutorial 





 

4  Variable Representation 

One important step in deciding which evolutionary algorithm is to use is a close look to the for-
mat/representation of your variables (phenotype). A second step is the direct decision on which 
format the evolutionary algorithm should work (genotype). The representation determines the 
overall algorithm, that means, the used evolutionary operators. 
In the GEATbx different representations are directly supported: 

1. real value representation, 
2. binary value representation, 
3. integer value representation, 
4. ordering representation. 

4.1  Conversion between Variable Representations 

The use of a representation and necessary conversion is controlled by the parameter 
VariableFormat and the conversion function bindecod (fully transparent to the user). The 
toolbox provides low-level functions for conversion between the representations: 

• binary to integer (bin2int) 
• binary to real (bin2real) 

Tab. 4-1: Combinations of variable representation and conversion 

VariableFormat EA works on variable representation conversion 
0 real real no 
1 binary real bin2real 
2 integer integer no 
3 binary integer bin2int 
4 binary binary no 
5 integer ordering/permutation no 

 

In the end it can be stated: 
• Use nearly always the “natural” representation of the variables (no conversion)! 

− If the variables of the objective function are real use the real value presentation for the 
evolutionary algorithm as well. 

− If the variables of the objective function are binary use the binary value presentation for 
the evolutionary algorithm as well. 

− If the variables of the objective function are integer use the integer value presentation 
for the evolutionary algorithm. 

www.geatbx.com  GEATbx Tutorial 



18 4  Variable Representation 

4.2  Examples of Variable Representation 

4.2.1 Real --- Real 

The variables of the objective function are in real value representation(phenotype: real). Now it 
could be chosen between binary and real value representation for the evolutionary algorithm. 
Recommended is the real value representation (tbx3real). It works much quicker than the bi-
nary one.  

geamain2('objfun1') 

All default parameters of the GEATbx are defined for a real representation. objfun1 is an objec-
tive function using real representation. 
This example is implemented in the demo function demofun1. 

4.2.2 Real (phenotype) --- Binary (genotype) 

However, if the decision comes to use the binary values inside the evolutionary algorithm (geno-
type: binary), the population is initialized as if the variables would be binary (initbp), the evo-
lutionary operators (mutbin and, for instance, recsp) are applied, and before the evaluation of 
the objective function the binary values are converted to real values (bindecod and bin2real). 

geamain2('objfun1', tbx3sga) 

The toolbox function tbx3sga defines all the options for a binary representation according to the 
definition of the simple genetic algorithm SGA. objfun1 is an objective function using real rep-
resentation. 
This example is implemented in the demo function demosga. 

4.2.3 Integer (phenotype) --- Integer (genotype) or Binary (genotype) 

In this case the variables are in integer representation (phenotype: integer). The evolutionary al-
gorithm can work on integer values (mutint and recdis). The toolbox function tbx3int de-
fines these options. The example demointeger1 contains a similar implementation (optimizing 
a normally real function using an integer representation). 
The evolutionary algorithm can also work on binary values (mutbin and, for instance, recsp) 
and convert them to integer (bin2int) before evaluation of the objective function. Just set the 
parameter VariableFormat = 3 and the conversion is handled by the toolbox. 

4.2.4 Binary --- Binary 

There exist a number of problems asking for a binary representation (for instance, feature selec-
tion). The toolbox function tbx3bin defines default parameters for a binary representation used 
by the EA (mutbin, recdprs and VariableFormat = 4). 

geamain2('objone1', tbx3bin) 

objone1 is an objective function using binary representation (MAXONE problem). A complete 
demo of this representation is contained in demobin1. 

GEATbx Tutorial  www.geatbx.com 



4.3  Simultaneous Use of Multiple Representations 19 

4.3  Simultaneous Use of Multiple Representations 

Up to now it has been assumed that all the variables of a problem to be solved exist in the same 
representation. This is, however, not always the case. When solving some problems in practice 
variables of differing types have to be dealt with simultaneously. This means that some of an in-
dividual’s variables are real and others are integer or binary. 
As previously mentioned, each variable representation has different operators which are best 
suited to it. In addition, certain singularities have to be taken into account for each data type. A 
way has to be found to optimize all the variables simultaneously despite these different re-
quirements. 
An extensive discussion of the different possibilities can be found in Chapter 'Parameter Optimi-
zation of Variables of different Representations' in "GEATbx Introduction". 

4.3.1 Integer and Binary (phenotype) --- Integer (genotype) 

A binary variable is equivalent to an integer variable within the limits [0, 1]. Thus, without any 
restrictions integer and binary variables can simultaneously be optimized using the integer 
representation. 
The toolbox function tbx3int defines the options for integer representation. A full blown demo 
example is currently not available. Anyone a good objective function asking for binary and inte-
ger variables? 

4.3.2 Real and Integer and Binary (phenotype) --- Integer (genotype) 

Support for this conversion will be available soon. If you are interested, send me an email to 
speed up the implementation of this feature. 

www.geatbx.com  GEATbx Tutorial 





 

5  Overview of GEA Toolbox Structure 

The GEATbx is build around a layer model. Figure 5-1 gives a first overview of the layers used 
for the GEATbx. 

Fig. 5-1: Layer model of the GEATbx 

Low-level operators

High-level operators

Main function

Predefined algorithms
(Toolbox3 functions)

User interface
(Demo functions)

 

Central point is the Main function (geamain2). This function is called from the user interface 
(Demo functions, for instance, demofun1, demogeatbx). The Toolbox functions define default 
parameters for a number of different evolutionary algorithms. The Main function calls all neces-
sary evolutionary operators. The call of evolutionary operators is done by a high-level layer call-
ing the low-level layer. The Main function also calls the objective function. Additionally, the 
Main function performs nearly all the data management and result collection. 
Figure 5-2 shows the full structure of the GEATbx using the names of the corresponding 
m-functions. Even in this detailed view the layer model is visible. Center of the toolbox is the 
Main function geamain2. The Main function is called by the Demo functions. The Demo func-
tions get parameter sets of predefined algorithms via the Toolbox functions (tbx3*, tbx3real, 
tbx3bin, tbx3es1). The Main function calls the high-level operators (selection, recombin, 
mutate). The high-level operators call the low-level operators (selsus, recdis, mutreal). 
This layer model not only provides a good overview of the structure of the GEATbx. It makes the 
extension of the toolbox by new operators or special functions straightforward. 
In this structure there are two main points of user input; the objective function and the demo func-
tion.. On the one hand the user must provide an objective function implementing its problem to 
solve. This task is described in Chapter 3, p.11. On the other hand the user must define the evolu-
tionary algorithm to employ and define none, some or many of the provided options of the 
GEATbx. This can done in one central place. All the provided examples of the GEATbx are 
called demo functions and can be used as a starting point. 

5.1  Naming Convention 

Throughout the GEATbx the functions are named according to the following conventions. 

www.geatbx.com  GEATbx Tutorial 



22 5  Overview of GEA Toolbox Structure 

Tab. 5-1: Naming convention of the GEATbx 

Präfix  group of functions or operators 

demo high-level demo functions  
(set of options for a special problem, often used as demonstration) 

tbx3 high-level toolbox algorithms  
(define a special evolutionary algorithm of the toolbox) 

init initialization functions 

sel low-level selection operators 

rec low-level recombination operators 

mut low-level mutation operators 

reins low-level reinsertion operators 

obj 
mobj 
sim 

objective functions (implement a special problem)  
multi-objective functions  
simulation function (called by corresponding objective function) 

plot application specific plot functions 

 

GEATbx Tutorial  www.geatbx.com 



5.2  Calling Tree 23 

5.2  Calling Tree 

Fig. 5-2: Calling tree of the Genetic and Evolutionary Algorithm Toolbox (GEATbx) 
 

Legend 

provided by GEA Toolbox 

user definable functions 
(examples provided) 

demo* 

rec* 

obj* 
mut* 

mutint 

mutreal 

seltour 

seltrunc 

sellocal 

selrws 

selsus 

resplot 

migrate 

objfun* 

reinsloc 

reins mutate 
recombin 

selection 

geaoptset 

tbx3real 

 
 

geamain2 

ranking 

recsp 

recdprs 

recdis 

Calling Tree of 
Genetic and Evolutionary 

Algorithm Toolbox 

objfun1 

demogeatbx 

tbx3* 

reinsreg

compete

objdopi 

initpop init*p 

 

5.3  Demo / Startup function 

At the beginning there is a high-level function for defining some parameters and the application 
specific details. These functions are called demo function (demo*.m). 

• demofun1 (demo solving objfun1, employs an EA for real valued parameters), 
• demofun2 (demo solving objfun2, employs an EA with ES as mutation operator), 
• demogeatbx (simple menu driven demo to more than 15 objective functions and 3 differ-

ent EA). 
Inside a demo function all parameters of the EA and the optimization process can be defined. 
Every aspect of the behavior of the GEATbx can be controlled from the outside via parameters 
set in the demo functions. Thus, all things necessary to define a large optimization or to define 
special demonstrations are provided by the demo functions. This is the ideal point to define tai-
lored parameter sets for public demonstrations, demos during lectures or to present special as-
pects of a large system. 

www.geatbx.com  GEATbx Tutorial 



24 5  Overview of GEA Toolbox Structure 

5.4  Toolbox functions (Predefined algorithms) 

The GEATbx contains a number of predefined EA. They are not more than a set of parameter op-
tions defined in a Toolbox function (tbx3*.m). The whole process of option setting, the meaning 
of the options and more is described in the document Parameter options of the GEATbx. 
Examples of toolbox functions: 

• tbx3real / tbx3int / tbx3bin (parameter for real / integer / binary valued variables), 
• tbx3es1 (implements an evolution strategy), 
• tbx3comp (switches migration and competition on), 
• tbx3perm (implements a simple permutation / ordering EA), 
• tbx3sga (implements the Simple Genetic Algorithm SGA), 
• tbx3steadyga (implements a steady state GA), 
• tbx3output (combines a number of options relevant for textual and graphical output). 

By using one of these functions the respective options are set at ones. This makes reading the 
demo functions easier. And the options set defined in the toolbox functions can be reused by 
other optimizations. Further parameters can be set in the demo functions, even the ones provided 
by the toolbox function overwritten. All options not defined are set automatically inside the main 
function geamain2 by calling geaoptset, checking the validity of the options at the same time. 

5.5  Evolutionary Algorithm - Main function 

The demo functions call the working horse of the GEATbx: 
• geamain2 (GEA toolbox MAIN function) 

Here all the administrative work is done: resolve parameter values, initialize the population, run 
the evolutionary algorithm including call of the objective function, and display and saving the re-
sults. 

5.5.1 Initialization 

The initialization is done by: 
• initpop (high-level initialization function, initializes a whole population, includes user 

provided individuals, employs randomization of provided individuals and handles other as-
pects of initialization/inoculation), 

which calls the representation specific low-level initialization functions: 
• initrp (initializes a population using real values), 
• initip (initializes a population using integer values), 
• initbp (initializes a population using binary values). 

An application specific initialization function (for instance initdopi) may also be employed. 
However, the already created/initialized individuals can be directly input to the main function 
(4th input parameter) via the demo function. The high-level initialization function initpop han-
dles all aspects of population size, additional randomization or inclusion of randomly generated 
individuals. 

GEATbx Tutorial  www.geatbx.com 



5.5  Evolutionary Algorithm - Main function 25 

5.5.2 Generational loop of the EA 

As soon as the population of individuals is initialized and evaluated, the evolutionary algorithm 
starts. For as many generations as necessary/defined, new populations are produced and evalu-
ated. All functions of the evolutionary algorithm are called via high-level functions, thus support-
ing the multi-population (distributed) concept. 

• Fitness assignment by ranking (ranking), see Subsection 5.5.3, 
• Selection (selection), see Subsection 5.5.4, 
• Recombination / Crossover (recombin), see Subsection 5.5.5, 
• Mutation (mutate), see Subsection 5.5.6, 
• Evaluation (obj*.m), see Subsection 5.5.7, 
• Reinsertion (reins), see Subsection 5.5.8, 
• Migration (migrate), see Subsection 5.5.9, 
• Competition (compete), see Subsection 5.5.10, 
• Visualization (resplot), see Subsection 5.5.11. 

Inside the high-level functions the appropriate functions are called. 

5.5.3 Fitness assignment by ranking 

For fitness assignment by ranking the toolbox provides one function, no low-level functions are 
used: 

• ranking (linear and non-linear ranking; single- and multi-objective ranking). 

Low-level functions are only used for multi-objective ranking, especially GOAL attainment and 
sharing: 

• rankgoal (perform goal preference calculation between multiple objective values), 
• rankplt (RANK two multi objective values Partially Less Than), 
• rankshare (SHARing between individuals). 

5.5.4 Selection 

For selection a high-level function is provided: 
• selection (high-level selection function). 

By parameter low-level selection functions can be chosen, which will be called for the subpopula-
tions inside the high-level function: 

• selsus (selection by stochastic universal sampling), 
• selrws (roulette wheel selection), 
• seltrunc (truncation selection), 
• seltour (tournament selection), 
• sellocal (local selection). 

5.5.5 Recombination/Crossover 

For recombination/crossover a high-level function is provided: 
• recombin (high-level recombination/crossover function) 

By parameter low-level recombination/crossover functions can be chosen which will be called for 
the subpopulations inside the high-level function. The term recombination is now used for all re-

www.geatbx.com  GEATbx Tutorial 



26 5  Overview of GEA Toolbox Structure 

combination functions (other publications use the term crossover to refer to recombination of bi-
nary valued variables). 
Recombination for all parameter optimizations: 

• recdis (discrete recombination). 

Recombination for real valued parameter optimizations: 
• recint (intermediate recombination), 
• reclin (line recombination), 
• reclinex (extended line recombination). 

Recombination for binary valued parameter optimizations (all implemented in recmp, they are 
special cases of discrete recombination): 

• recsp (single point crossover), 
• recdp (double point crossover), 
• recsh (shuffle point crossover), 
• recsprs (single point crossover with reduced surrogate), 
• recdprs (double point crossover with reduced surrogate), 
• recshrs (shuffle point crossover with reduced surrogate). 

Currently, for integer valued parameter optimizations recdis must be used. 

Recombination for permutation/ordering/combinatorial optimizations: 
• recgp (generalized position crossover/recombination), 
• recpm (partial matching crossover/recombination). 

5.5.6 Mutation 

For mutation a high-level function is provided: 
• mutate (high-level mutation function) 

Depending on the variable representation one of the low-level mutation functions will be called 
for every subpopulation: 
Real values: 

• mutreal (mutation operator for real values) 

Integer values: 
• mutint (mutation operator for integer values) 

Binary values: 
• mutbin (mutation operator for binary values) 

For real valued representation a number of additional mutation functions are provided. These 
functions use the mutation operators of evolution strategies. Thus, an adaptation of strategy pa-
rameters takes place. 
Evolution strategy mutation operators: 

• mutes1 (adaptation of mutation step sizes), 
• mutes2 (adaptation of mutation step sizes and another set of strategy parameters). 

Mutation for permutation/ordering/combinatorial optimizations (all implemented in mutcomb): 
• mutswap (exchange/swap variables), 
• mutinvert (invert parts of an individual), 
• mutmove (move one variable inside an individual). 

GEATbx Tutorial  www.geatbx.com 



5.5  Evolutionary Algorithm - Main function 27 

5.5.7 Evaluation 

The toolbox provides many examples for objective functions. These functions are called 
"obj*.m". All functions use the same calling syntax. 
Standard evolutionary algorithm test functions with a free definable dimension using the real val-
ued representation are provided in: 

• objfun1 (DE JONG's function 1) - objfun12 (MICHALEWICZ's function). 

Binary valued representation is used in: 
• objone1 (ONEMAX function). 

Dynamic optimization is implemented in: 
• objdopi (double integrator), 
• objlinq2 (linear quadratic problem). 

Standard optimization test functions with 2 independent variables (dimension = 2) are provided 
in: 

• objbran (BRANIN's rcos function), 
• objeaso (EASOM's function), 
• objgold (GOLDSTEIN-PRICE function), 
• objsixh (six hump camelback function). 

A number of multi-objective functions are also provided: 
• mobjfonseca1 (FONSECA's MO test function 1), 
• mobjfonseca2 (FONSECA's MO test function 2), 
• mobjbelegundu (BELEGUNDU's function (constrained)), 
• mobjdtlz1 (Deb, Thiele, Zitzler, Laumanns' multiobjective function 1), 
• mobjdtlz2 (Deb, Thiele, Zitzler, Laumanns' multiobjective function 2), 
• mobjdtlz3 (Deb, Thiele, Zitzler, Laumanns' multiobjective function 3), 
• mobjkita (KITA's function (constrained)), 
• mobjquagliarella (QUAGLIARELLA's function), 
• mobjcantilever (multiobjective cantilever beam system), 
• mobjdebconstr (DEB's constrained function), 
• mobjsoland (SOLAND function multi-objective version). 

A rudimentary interface to the tsp-lib is also provided (not fully implemented, take it as a starting 
point and send me your extended implementation): 

• objtsplib (interface to the tsp-lib, see subdirectory objfun/tsp). 

See M-FUNCTIONS - INDEX (part of online documentation) for all functions or EXAMPLES OF 

OBJECTIVE FUNCTIONS (part of online documentation) for a mathematical description. 
It is possible to pass any number of additional parameters to the objective function, as long as the 
respective objective function can handle them. These parameters can be defined or loaded in the 
demo function and send as 5th parameter (and more) to geamain2. All these parameters are di-
rectly passed to the objective functions. This can be used to optimize a special aspect of the ob-
jective function or to define one or multiple parameter sets inside the objective function. 
Instead of writing an objective function file and passing the name of the function, the objective 
function can be passed directly in a string to the main function as well. However, it is recom-
mended to use one of the provided objective functions as a template and pass over only the file 
name. 

www.geatbx.com  GEATbx Tutorial 



28 5  Overview of GEA Toolbox Structure 

5.5.8 Reinsertion 

For reinsertion the toolbox provides a high-level function: 
• reins (reinsertion of offspring into population). 

Depending on the used population model (global/regional or local), a corresponding low-level re-
insertion function is called from inside the high-level reinsertion function. 
Low-level reinsertion functions: 

• reinsreg (global/regional reinsertion of offspring into population), 
• reinsloc (local reinsertion of offspring into population). 

5.5.9 Migration 

For migration the toolbox provides 1 function, no low-level functions are used: 
• migrate (migration of individuals between subpopulations). 

5.5.10 Competition 

For competition between subpopulations the toolbox provides 1 function, no low-level functions 
are used: 

• compete (competition between subpopulations). 

5.5.11 Visualization 

The visualization of the results is implemented on 3 different levels: 
• tabular output of results of evolutionary algorithm (geaoptprint - pretty printed output 

of the options; gearunstatus - pretty printed output of the results of one generation), 
• graphical output of results of evolutionary algorithm (resplot), 
• problem specific output (specific m-file, for instance plotdopi for objdopi). 

5.6  Utility functions 

Throughout the toolbox low-level utility functions are used. They are useful for everyday work as 
well: 

• compdiv (compute diverse things), 
• comploc (compute stuff for the local model), 
• compplot (compute stuff for plotting and visualization), 
• chkbound (check boundaries and reset variables outside the boundaries), 
• savebindata (save matlab variables using a provided name into one mat file), 
• plotstd (set standard options for a new figure, used in all plot functions) 
• expandm (expand a matrix), 
• prprintf (pretty printed output), 
• straddname/straddtime (add a name/string or the current time to a string or filename), 
• deblankall (deblank both sides of a string), 
• findfiles (find files inside multiple directory and file search masks including wildcard), 
• menutext (same as menu, but without graphical stuff, thus, can be compiled). 

GEATbx Tutorial  www.geatbx.com 



5.6  Utility functions 29 

For the handling of the options structure a few special functions are provided: 
• geaoptset (set a GEAOpt option), 
• geaoptsave (save a GEAOpt structure into a m-file or a text file), 
• geaoptload (load GEA Options from a text file into a GEAOpt structure). 

www.geatbx.com  GEATbx Tutorial 





 

6  Multi-objective Optimization in the GEATbx 

Multi-objective optimization is a very important optimization class. Many real-world problems 
ask for multiple objective values to approach the problem in its many facetes. The GEATbx sup-
ports multi-objective optimization fully integerated into the “standard” behavior. However, there 
are quite a few special or additional aspects to take into account. 
One advise: thinking in a multi-objective way is not always straightforward. More than once I had 
to check my conclusions (and change them in the end). Multiple objectives and the answer to the 
question, which solution(s) is/are really better than another can be confusing. 
If multi-objective optimization is new to you, please stop reading here and get the basics by read-
ing the Chapter 'Multi-objective Optimization' in "GEATbx Introduction". 
If your objective function uses one or multiple objective values per individual is not important for 
the GEATbx. Single-objective optimization is "just" a special case of multi-objective optimiza-
tion. The objectivce values of the population are always handled in a matrix. In the single-
objective case this matrix has only one column. 
Even when the objective function returns multiple objectives, the GEATbx can use only the first 
objective for fitness assignment. The additional objectives are only used to save more objectives, 
which may be used for later reporting or problem-specific visualization. BTW, this was the way 
the GEATbx handled complex problems a few years ago. Multiple objectives were aggregated us-
ing the weighted sum approach. The additional objectives helped to get a closer look at the multi-
ple aspects of real world problems. 

6.1  Switch on multi-objective ranking 

When multi-objective ranking (multi-objective optimization) should be used, it must be explicitly 
switched on. This is handled by the option Selection.RankingMultiobj. A value of 0 employs 
single-objective ranking, a value of 1 or larger multi-objective ranking. 

GeaOpt = geaoptset(GeaOpt, 'Selection.RankingMultiobj', 1); 

An example for multi-objective ranking and the visualization of such functions is provided in 
demomop. 

6.2  Visualization of multi-objective solutions 

A visualization of the multi-objective solutions in search space and in solution space is part of the 
GEATbx (implemented in plotmop). 

The visualization is triggered by the option Selection.RankingMultiobj. A value larger than 
10 enables the visualization. Higher values display the visualization only every defined genera-
tion-10. 

www.geatbx.com  GEATbx Tutorial 



32 6  Multi-objective Optimization in the GEATbx 

To display the multi-objective optimization every generation, use: 
GeaOpt = geaoptset(GeaOpt, 'Selection.RankingMultiobj', 11); 

If the visualization should be displayed every 5 generations, set the option to 15: 
GeaOpt = geaoptset(GeaOpt, 'Selection.RankingMultiobj', 15); 

 

6.3  Definition of goals in objective functions 

Goals provide a way to “exclude” solutions, which are not good enough in one of the objectives. 
This is not done by a strong exclusion. Instead, solutions complying with the goal(s) are favored 
compared to worse solutions. 
It is nearly always useful, to define goals for the multiple objective values. 
 

GeaOpt = geaoptset(GeaOpt, 'System.ObjFunGoals', [-1.3, 4, 2, 0]); 

Goals are problem-specific values. For some of the provided multi-objective example functions, a 
set of goals is defined inside the objective function (see mobjdebconstr). For other multi-
objective example functions goals are defined in the demo function demomop. 

Goals can be seen as a soft constraint or boundary. Thus, goals can be used for an efficient con-
straint handling technique employed by most of the constraint example functions of the GEATbx, 
see Chapter  

6.4  Archive - collect and reinsert good solutions 

Collection of good individuals is implemented in colbestind. 

GEATbx Tutorial  www.geatbx.com 



 

7  Constraint Optimization in the GEATbx 

Constraint optimization is a broad and sometimes complex topic. However, in real-world optimi-
zation a few constraints are often present. In this chapter the handling of such constraints using 
the GEATbx is described. 
Constraints of the variables are a simple method of constraint handling. To be honest, these con-
straints are enforced by the GEATbx (from the first day many years ago). Section 7.1, p.33 de-
scribes definition and application of this method. 
A different field of constraints are functional constraints. The GEATbx supports these constraints 
by using additional objective values coupled with specific goal values. A description of this 
method including many pointers to examples is given in Section 7.2, p.33. 

7.1  Constraining the variables 

Constraints on the varaiables of a problem are enforced. When you define/describe your problem 
in your objective function, you must provide a vector of the upper and lower bounds of the vari-
ables (called VLUB internally, GEATbx option: System.ObjFunVarBounds). 
This vector of upper and lower bounds contains the boundaries for each variable. Only inside 
these boundaries the variable is changed during the optimization. 
For nearly all problems I recommend to define these boundaries inside the objective function. All 
example functions use this method. Inside the demo functions (or inside the main function of the 
GEATbx) these boundaries can or will be taken automatically directly from the objective function 
(using the utility function geaobjpara). 

Please take your time to define appropriate values for the boundaries of the variables. If you are 
looking for good values in the range [0.1 0.2], a definition of boundaries in the range [0, 1000] 
would produce a much more difficult optimization problem. An appropriate definition of the vari-
able boundaries is one of the most important prerequisites for the successful solution of an opti-
mization problem. 
If you do not know meaningful boundaries for the variables of your problem you may start with 
values far enough to include the possible areas. A better way would be to get a better understand-
ing of the problem to solve. Ways to achieve this are described in 'How to Approach new Optimi-
zation Problems', Chapter 9, p.41. 

7.2  Functional constraints 

Functional constraints come in a heap of different possibilities. Here (and in the GEATbx) I con-
centrate on the following variants: 

• inequality constraint(s): x2+9x1 >= 6, -x2+9x1 >= 1; example in mobjdebconstr. 
• equality constraint(s): -2x1^4 + 2 - x2 = 0; example in mobjsoland. 

www.geatbx.com  GEATbx Tutorial 



34 7  Constraint Optimization in the GEATbx 

to be extended. 
The used method is nearly identical to COMOGA, published in [SRB1995]. 

7.2.1 Functional constraints using additional objectives and goals 

Constraints, which are not satiesfied, are set to the distance from the boundary (in the simple 
case). Thus, you get an additional objective value reflecting the violation of the constraint. The 
corresponding goal for this objective is set to zero. In this way the multi-objective optimization 
gets a hint to search for solutions with a smaller objective, thus minimizing the corresponding ob-
jective value (and thus the violation of the constraint). 
As soon as a constraint is satiesfied, the correspoinding objective is set to zero. In this way. these 
objectives no longer influence the multi-objective optimization – the goal of zero is reached and 
does not change as long as the constraint is satiesfied. (This setting the objective to zero is very 
importantz. Otherwise the optimization would still be influenced and the results are considerably 
different. Took me some time to see and later understand this aspect.) 

7.2.2 Implementation of functional constraints (larger than, >=) 

This whole mechanism can be implemented in a few lines of Matlab code (including for loops 
and if statements) or using one of these powerful Matlab one-liners (which are not always obvi-
ous at first glance – but calculate quick). Here is a description of the one-liner method. 
Lets implement the constraints of Deb's constrained function inside the objective function 
(mobjdebconstr): x2+9x1 >= 6, -x2+9x1 >= 1 

Define the constraint boundaries: 
FunConstraints = [6, 1]; 

Calculate the constraints 
G1 =  x2 + 9*x1; 

G2 = -x2 + 9*x1; 

GAll = [G1 G2]; 

Create a matrix with constraint boundary values for check of constraint violation: 
BAll = repmat(FunConstraints, [Nind, 1]); 

Set all constrained objectives, which are satisfied to zero and all other (violated constraints) to the 
distance from the boundary. As we are maximizing (>=6, >=1) and our objectives are minimized 
we multiply with -1: 

ObjAdd = ((GAll-BAll) >= 0).*0 + ((GAll-BAll) < 0).*(GAll-BAll).*-1; 

The first part sets all satiesfied constraints to zero (the constraints G1 or G2 are larger than the de-
fined boundaries BAll). The second part takes all values with unsatiesfied constraints and multi-
plies them with the difference between constraint and defined boundary. Additionally, the result-
ing value is multiplied with -1 (the constraints in this example must be larger than the boundary, 
but the GEATbx is minimizing all the time). 
That's it. Now run your multi-objective optimization and you get results, where the constraints are 
satiesfied (larger than or equal to the defined boundaries) and the (standard) objectives are mini-
mized. 

GEATbx Tutorial  www.geatbx.com 



7.2  Functional constraints 35 

7.2.3 Implementation of functional constraints (smaller than, <=) 

Lets implement the constraints of Belegundu's constrained function inside the objective function 
(mobjbelegundu): -x1 + x2 - 1 <= 0, x1 + x2 - 7 <= 0. 

Define the constraint boundaries: 
FunConstraints = [0, 0]; 

Calculate the constraints 
G1 = -x1 + x2 – 1; 

G2 =  x1 + x2 – 7; 

GAll = [G1 G2]; 

Create a matrix with constraint boundary values for check of constraint violation: 
BAll = repmat(FunConstraints, [Nind, 1]); 

Set all constrained objectives, which are satisfied to zero and all other (violated constraints) to the 
distance from the boundary. As we are minimizing (<=0, <=0) and our objectives are minimized 
too we do not need any further adjustments: 

ObjAdd = ((GAll-BAll) <= 0) .* 0 + ((GAll-BAll) > 0) .* (GAll-BAll); 

 

7.2.4 Implementation of functional constraints (equal to, ==) 

Lets implement the equality constraint of Soland's function inside the objective function 
(mobjsoland): 0 = -2x1^4 + 2 - x2. 

Calculate the constraint: 
G1 = abs(-2.*x1.^4 + 2 - x2); 

A true equality is nearly impossible (or in very special cases only). Thus, we nearly never find a 
satiesfied (equality) constraint. Two ways to solve this problem. First, we do not use a boundary 
of zero. Instead we use a value very near zero (for instance 0.005 in this example) and go on. Or 
we set the corresponding goal value to a small value (for instance 0.001) and not zero. In real 
world applications each of these methods will work reasonably well. 
Define the constraint boundary: 

FunConstraints = [0.005]; 

Set the constrained objective, which is (reasonably) satisfied to zero and all other (violated con-
straints) to the distance from the boundary. 

ObjAdd = (G1 <= FunConstraints) .* 0 + (G1 > FunConstraints) .* G1; 

In the end the equality constraint is transferred into an inequality constraint (and handled accord-
ing to the previous examples). 
 
I am looking for a method to encapsulate this whole mechanism in a separate function. At the 
moment am naot sure on the best approach. Thus, use the described methid. Later there might be 
a fully encapsulated function offering more clarity and comfort. 

www.geatbx.com  GEATbx Tutorial 





 

8  Data Structures of the GEATbx 

Nearly all data structures of the GEATbx are mapped to 2-D matrizes. 
The used data structures in the GEATbx: 

• Chromosomes (genotype / individuals) 
• Phenotype (decision variables / individuals) 
• Objective function values (objective values) 
• Fitness values 

Remark: 
Many problems don’t need a mapping from the chromosome to phenotype structure. For instance, 
if the variables are real valued and the evolutionary algorithm works with this real valued vari-
ables, there is no mapping necessary. Similar for binary variables and an evolutionary algorithm 
that uses binary variables. Then, chromosomes and phenotypes are identical. Thus, throughout the 
whole documentation the term individual is used for both, chromosomes and phenotypes. Only if 
differentiation is necessary between both, the original terms will be used. Please read the section 
about Variable Representation, Chapter 4, p.17 for more information as well. 

8.1  Chromosomes (genotype / individuals) 

The chromosome data structure stores an entire population in a single matrix of size Nind x 
Lind, where Nind is the number of individuals in the population and Lind is the length of the 
genotypic representation of those individuals (for integer and real valued representation Lind is 1, 
that means, genotype and phenotype are identical). Each row corresponds to an individual’s geno-
type, consisting of binary, integer or real values. 
An example of the chromosome structure 

Chrom = g1,1     g1,2     g1,3    ...  g1,Lind        individual 1 

        g2,1     g2,2     g2,3    ...  g2,Lind        individual 2 

        g3,1     g3,2     g3,3    ...  g3,Lind        individual 3 

         .       .       .     ...   . 

        gNind,1   gNind,2   gNind,3   ...  gNind,Lind     individual Nind 

This data representation does not force a structure on the chromosome structure, only requiring 
that all chromosomes are of equal length. Thus, structured populations or populations with vary-
ing genotypic bases may be used in the GEATbx. However, a suitable decoding function, map-
ping chromosomes onto phenotypes, must be employed. 

8.2  Phenotypes (decision variables / individuals) 

The decision variables (phenotypes) in the evolutionary algorithm are obtained by applying some 
mapping from the chromosome representation into the decision variable space. Here, each string 
contained in the chromosome structure decodes to a row vector of order Nvar, according to the 

www.geatbx.com  GEATbx Tutorial 



38 8  Data Structures of the GEATbx 

number of dimensions in the search space and corresponding to the decision variable vector 
value. 
The decision variables are stored in a numerical matrix of size Nind x Nvar. Again, each row 
corresponds to a particular individual’s phenotype. An example of the phenotype data structure is 
given below, where bin2real is used to represent a decoding function mapping the genotypes 
onto the phenotypes. 

Phen = bin2real(Chrom)    % map genotype to phenotype 
Phen = x1,1     x1,2     x1,3    ...  x1,Nvar        individual 1 
       x2,1     x2,2     x2,3    ...  x2,Nvar        individual 2 
       x3,1     x3,2     x3,3    ...  x3,Nvar        individual 3 
        .       .       .     ...   . 
       xNind,1   xNind,2   xNind,3   ...  xNind,Nvar     individual Nind 

The actual mapping between the chromosome representation and their phenotypic values depends 
upon the decode function used. It is perfectly feasible using this representation to have vectors of 
decision variables of different types. For example, it is possible to mix integer, real-valued, and 
binary decision variables in the same Phen data structure. 

8.3  Objective function values 

An objective function is used to evaluate the performance of the phenotypes in the problem do-
main. Objective function values can be scalar or, in the case of multiobjective problems, vectors. 
Note that objective function values are not necessarily the same as fitness values. 
Objective function values are stored in a numerical matrix of size Nind·Nobj, where Nobj is the 
number of objectives. Each row corresponds to a particular individual’s objective vector. An ex-
ample of the objective function values data structure is shown below, with mobjfonseca2 repre-
senting an example multiobjective function. 

ObjV = mobjfonseca2(Phen)     % objective function 
ObjV = y1,1     y1,2     y1,3    ...  y1,Nobj        individual 1 
       y2,1     y2,2     y2,3    ...  y2,Nobj        individual 2 
       y3,1     y3,2     y3,3    ...  y3,Nobj        individual 3 
        .       .       .     ...   . 
       yNind,1   yNind,2   yNind,3   ...  yNind,Nobj     individual Nind 

8.4  Fitness values 

Fitness values are derived from the objective function values through a scaling or ranking func-
tion. Fitness values are non-negative scalars and are stored in column vectors of length Nind, an 
example of which is shown below. ranking is a fitness function contained in the GEATbx. 

Fitn = ranking(ObjV)     % fitness function 
Fitn = f1     individual 1 
       f2     individual 2 
       f3     individual 3 
        ... 
       fNind   individual Nind 

Note that for multiobjective functions, the fitness of a particular individual is a function of a vec-
tor of objective function values. Multiobjective problems are characterized by having no single 
unique solution, but a family of equally fit solutions with different values of decision variables. 

GEATbx Tutorial  www.geatbx.com 



8.5  Multiple subpopulations 39 

Care should therefore be taken to adopt some mechanism to ensure that the population is able to 
evolve the set of Pareto optimal solutions. 

8.5  Multiple subpopulations 

The GEATbx supports the use of a single population divided into a number of subpopulations or 
demes by modifying the use of data structures so that subpopulations are stored in contiguous 
blocks within a single matrix. For example, the chromosome data structure, Chrom, composed of 
Subpop subpopulations, each of length N individuals Ind, is stored as: 

Chrom =     ... 
        Ind1 Subpop1 

        Ind2 Subpop1 

            ... 
        IndN Subpop1 

        Ind1 Subpop2 

        Ind2 Subpop2 

            ... 
        IndN Subpop2 

            ... 
        Ind1 SubpopSubpop 

        Ind2 SubpopSubpop 

            ... 
        IndN SubpopSubpop 

This is known as the regional model, also called migration or island model. 
 

www.geatbx.com  GEATbx Tutorial 





 

9  How to Approach new Optimization Prob-
lems 

You are faced with a new optimization problem. How are you best going to approach this task? 
What questions have to be asked? What do you have to consider? What aspects do you have to 
examine? 
In this section I attempt to provide step-by-step instructions for solving optimization problems. 
Every single step is illustrated with examples, and you will find cross-references to other sections 
offering further examples. 
The approach I am presenting here is based on my own experiences gained in the course of solv-
ing real-world optimization problems using the GEATbx. I have received lots of positive feed-
back from many others who found this approach helpful for solving complex problems. 
The main points are: 

• classifying the problem and defining the objective function, 
• preliminary investigation of the system behavior, 
• selecting the appropriate optimization approach based on preliminary investigations (Chap-

ter 'Combination of Operators and Options to Produce Evolutionary Algorithms' in 
"GEATbx Introduction" discusses this point more closely), 

• executing and evaluating optimizations. 
Fig. 9-1 illustrates these points. The first thing to do when confronted with a new problem is to 
analyze it. This will provide you with the coding, number and boundaries of variables. Now you 
can implement the objective function. Very often you will have to gather further information on 
the system behavior. Once you have a basic understanding of the system you can start selecting 
operators and parameters of the evolutionary algorithm. With this information you have the foun-
dation to start executing the optimization. 

Fig. 9-1. Procedure for solving optimization problems using evolutionary algorithms 

Evolutionary
Algorithm

Special Knowledge

Operators

Objective Function

Coding

 SolutionProblem

Evaluation

SelectionMutation

Recombination

 

Some of these steps can be utilized with other optimization tools or methods as well. Addition-
ally, I have included several alternatives to investigating the system behavior. These help gain 
further information about the problem and can also be applied without optimization. These tools 
are mostly included in the GEATbx. 

www.geatbx.com  GEATbx Tutorial 



42 9  How to Approach new Optimization Problems 

9.1  Classifying the Problem and Defining the Objective 
Function 

When you begin to work on a new application you first need to classify the optimization problem. 
Consider how the system you want to investigate is defined and which outbound interfaces exist 
or have to be defined. This means you have to determine: 

• input data, including type and domain, 
• additional parameters necessary for system behavior control, which are not changed during 

the optimization, 
• output data necessary for the evaluation of the system. 

The system has to be available as a program which is entirely controlled through the input data 
(and possibly the additional parameters) and which as the result of the execution provides the 
output data. This program is the implementation of the objective function. Fig. 9-2 represents this 
structure graphically. 

Fig. 9-2. Structure of the system to be optimized as objective function  

Output data

(for evaluation)
possibly additional data

Input data

(number, type, definition range)
 additional parameters

Program
of the system to be optimized

 

The objective function is not only applicable within the optimization. It can also be applied dur-
ing program/system simulation with input data, e.g.: 

• interactive testing using systematically determined input data, e.g. call of the objective 
function with a data record and output of the objective value, 

• automatic simulation of several data records, e.g. used for direct visualization of the objec-
tive function, as well as Section 9.2, p.42), 

• problem-specific visualization, for instance simulation of the objective function and evalua-
tion of possible additional output parameters (e.g. states of a dynamic system) providing 
additional information on the system. 

It is very important that the objective function is implemented to be universally applicable to all 
these areas of application! You will find that using just one program for the problem at hand (op-
timization, problem-specific visualization, single simulation) pays off and also facilitates program 
maintenance. 

9.2  Investigating the System Behavior 

The basic questions when beginning to work on a new problem are: what are the system proper-
ties or, for that matter, the objective function properties, what does the search space look like, and 
do specific features occur. Often these questions only crop up once the first optimization has been 
carried out and the hoped for results have not been obtained. 
The results of the investigations suggested in the following could offer new information on the 
system behavior as well as indicate the type of objective function and the optimization procedure 
needed for a successful optimization. 

GEATbx Tutorial  www.geatbx.com 



9.2  Investigating the System Behavior 43 

The system at hand generally poses a high-dimensional problem for the optimization. An objec-
tive function value, subject to the given parameters, is returned as result of the simulation and ap-
plication of the objective function. 
The generally applicable investigations of the system behavior can be subdivided as follows: 

1. one and two-dimensional slices through the objective function, 
2. multi-dimensional visualization of the objective function, 
3. possible decrease of system size/dimension. 

I will take a closer look at these areas in the following. 

One and Two-dimensional Slices (Variational Diagrams) 

The systems under test are mostly high-dimensional (more than five dimensions or five parame-
ters). That is why a direct graphic representation of the search space is not possible. However, it 
is possible to illustrate some features of the objective function by creating one or two-dimensional 
slices. The results of slicing can be visualized using standard diagrams. 
The slices through the objective function are made through a certain point in the search space 
(here called center point). To calculate the slices through the center point all non-varying parame-
ters of the system are kept constant to the values of the center point. The varying or free parame-
ters are changed within an area around the center point. The boundaries of this area determine the 
extent of the slices as well as the level of detail. The area around the center point is discretized, 
the corresponding objective function values calculated, and the results visualized in 2-D and 3-D 
graphics. 
The center point can be the result of an optimization and thus represent a very good point, or it 
can be a point of great importance within the search domain. 
As the standard visualization methods are limited to three dimensions, only one-dimensional 
(variation of one parameter) and two-dimensional slices (variation of two parameters) can be car-
ried out. One-dimensional slices are easy to calculate. But they can only offer information along 
the coordinate axis of this one varied parameter. Two-dimensional slices need clearly more calcu-
lations, however, they offer additional information about the interaction/correlation between the 
two varied parameters. 
The following information can be deduced from the slices through the objective function: 

• an outline of the objective function, 
• whether the objective function is rough or smooth, 
• whether there is more than one minimum in the objective function (existence of local min-

ima), 
• whether there is a correlation between single variables, 
• which variables are very sensitive, and which ones have hardly any influence on the objec-

tive function, 
• restricting the area of interest (important for new problems where the boundaries of the 

variables are little or not known). 
However, keep in mind that all information drawn from these slices is only valid for the repre-
sented area and subject to restrictions. Due to the oftentimes non-linear relations between parame-
ters it is possible to deduce different information for different areas. The gathered information is 

www.geatbx.com  GEATbx Tutorial 



44 9  How to Approach new Optimization Problems 

thus only valid for the examined areas. The results may be valid for other areas too, however this 
need not be the case. 
For the parameter optimization of different real-world systems, variational diagrams were used 
for investigating the system behavior. Currently they are only explained in detail in Chapter 8 of 
[Poh99b] (greenhouse control system, car steering example). 

Multi-dimensional Visualization 

Most of the commonly used techniques for visualization are limited to representing data depend-
ing on one or two variables. This is due to the human visual limitation to three dimensions. There 
are two possible extensions to go beyond this limitation: using color for the fourth dimension and 
time as the fifth dimension. Neither possibility is very common and requires practice, especially if 
time is used for visualizing the fifth dimension. However, if the problem incorporates more than 
five dimensions a new method for visualizing arbitrarily high dimensions must be found. 
For the visualization of multi-dimensional data a method to transform multi-dimensional data to a 
lower dimension is needed, preferably to 2 or 3 dimensions. This transformation should provide a 
lower-dimensional picture where the dissimilarities between the data points of the multi-
dimensional domain corresponds with the dissimilarities of the lower-dimensional domain. 
These transformation methods are referred to as multi-dimensional scaling. One well-known 
multi-dimensional scaling method is the SAMMON-Mapping method [Sam69]. 
Please note that all these procedures are subject to information loss. On the one hand, visualiza-
tion of the information is only possible in this way. On the other hand, we have to take the reduc-
tion of information into consideration when interpreting the results. 
The multi-dimensional visualization can be applied to the following tasks: 

• representation of the similarity of results in the variable domain and the corresponding ob-
jective function values (comparing multiple optimization results), 

• representation of the “way of the improving solution through the variable search space” 
(„Weg der sich verbessernden Lösung durch den Variablen-Suchraum“) during an optimi-
zation, 

• representation of the “way of the improving solution through the objective function do-
main” („Weges der sich verbessernden Lösung durch den Zielfunktions-Suchraum“) during 
optimization (for multi-criteria problems ), 

• comparison of the „ways through the search space“ of different optimizations, 
• attempt to generate a low-dimensional representation of the search space of the objective 

function. 
The first four tasks can be calculated and subsequently visualized with the aid of functions which 
are included in the GEATbx. Currently, the last variant still comes across calculation and visuali-
zation problems. Even for an objective function with only ten dimensions or variables large data 
amounts have to be processed. 
These methods enable a clear illustration of complex data relations where other methods either 
fail or require a great deal of time and familiarization. 

GEATbx Tutorial  www.geatbx.com 



9.3  Selecting the Optimization Method 45 

Decreasing the System Size/Dimension 

An important aspect of investigating new systems is the analysis of the size/dimensionality of the 
problem and the possible means of its reduction. Most real-world systems are high-dimensional. 
Often, it is possible to reduce the number of dimensions for the optimization without distorting 
the results. If this is not directly possible try and perform first optimizations with a reduced or 
limited system to obtain a better impression of the overall system behavior. 
Which variants of dimension reduction or difficulties should you examine? 

• Reduction of the number of variables:  
Some of the existing variables are omitted (reduction of problem dimensions) or specified 
as set values (reduction of the size of the optimization problem). The reduction of the num-
ber of variables is the most important variant which should be taken full advantage of! 

• Scalability of the problem:  
System variables often represent discrete values of a course to be optimized. Depending on 
the resolution of the discretization the number of the variables of the optimization problem 
will change. I recommend a rough discretization for the first optimizations which can be 
adjusted to the real requirements later.  
On the other hand, for some problems it is also possible to start off with a reduced number 
of variables without distorting the nature of the problem. 

• Subdividing the problem into several optimization tasks:  
Dividing an optimization task into several ones offers great advantages. In this way the 
overall problem can be split up into several more manageable tasks, an option that is defi-
nitely of advantage. The overall temporal horizon is divided into several sections. The final 
state of one section represents the initial state of the next section. This method enables us to 
solve problems which cannot be mastered with current methods and devices. However, this 
approach is problem-specific. Keep in mind that the division into sections might effect the 
result of the optimization. 

A few examples of the GEATbx apply the above mentioned methods. Currently they are only ex-
plained in detail in Chapter 8 of [Poh99b] (greenhouse control system, car steering example). 

9.3  Selecting the Optimization Method 

With our knowledge of the type of the system at hand and the findings of the preliminary exami-
nation on the system behavior (Section. 9.2, p.42) we now have to choose an optimization 
method. This can be a single method, or a combination of several methods, or variants of one or 
more methods. 
The number of different problem classes is huge, and for each problem class a different method 
might be most suitable. 
Chapter 'Combination of Operators and Options to Produce Evolutionary Algorithms' in 
"GEATbx Introduction" deals with the selection procedure of methods and operators as well as 
the specification of appropriate options/parameters. Section 'Generally Adjustable Operators and 
Options' in "GEATbx Introduction" gives you indications on methods and operators which can be 
used for most problem classes. Section 'Globally Oriented Parameter Optimization' in "GEATbx 
Introduction" onwards deals with the definition of optimization methods for special problem 

www.geatbx.com  GEATbx Tutorial 



46 9  How to Approach new Optimization Problems 

classes. All suggestions are based on my own experiences and my work on different systems as 
well as on results found in the literature. 

9.4  Executing and Evaluating Optimizations 

Once you have selected one or more optimization methods, first optimizations can be carried out. 
These can already provide information on how easily the problem can be solved. 
Should the first trials already provide the optimal solution (with knowledge of the optimum) or a 
good or sufficient result, we can consider the problem as solved. Of course, depending on further 
requirements it is also possible to apply the methods described in the following to find the solu-
tions even more easily. 
More often than not, a problem cannot be considered solved after the first runs. Either the results 
are unsatisfactory or, if the optimum is not known, there is no way of being certain about the ob-
tained results. This is where you should start to  find methods which are better suited. 
Basically, there are two approaches: either different methods, operators or options are used, or the 
number of individuals and/or sub-populations is increased. The latter procedure leads to a clear 
increase in calculation time because the number of individuals linearly effects the overall calcula-
tion time (at least in most real problems). If the total calculation time is still less than 24 hours it 
at least resolves the question as to what extent it is possible to find a solution in this way. 
Should the methods used so far prove unsuccessful new variants have to be found. At this point it 
is necessary to reconsider the system properties. If the system cannot be optimized the way we 
had hoped for the system must have properties which have not been included in the selection 
process. By applying further methods it is possible to obtain additional information about the 
problem at hand.  
The visualization possibilities can be an important help when evaluating executed runs. These 
permit a detailed insight into the state of the population during various stages in an optimization 
as well as the course of the optimization. Questions as to an early convergence of the population, 
the existence of several extreme values, or the curve of variables of good individuals find answers 
here. You need to familiarize yourself with the application of these methods in order to be able to 
interpret the diagrams. The visualization methods offer the best possible insight into the current 
state and course of the optimization process and open up new means to adapt the parameters used 
in the optimization procedure. You can find examples of their application in the following Sec-
tions. 
At this point I would like to refer to the simultaneous application of different strategies during an 
optimization run. Please see Chapter 'Application of different strategies' in "GEATbx Introduc-
tion" for more details. This procedure on the one hand enables you to apply more than one strat-
egy to solve a problem. On the other hand, it is often the case that, in dependence of the progress 
of the optimization, different methods are better suited for different stages within the optimization 
run. The strategies thus support each other, i.e. the success of one strategy enables the subsequent 
success of another one. 
One good example to illustrate this is the application of several mutation variants, where one 
variant performs a rough search, another one a more refined search, and yet another one an even 
more refined search. A similar process can be achieved by the simultaneous use of different re-

GEATbx Tutorial  www.geatbx.com 



9.4  Executing and Evaluating Optimizations 47 

combination operators. During the subsequent evaluation it can very easily be checked at what 
time which of the applied strategies was successful. These means enable us to find the most 
promising methods for solving a problem. These can in turn be further refined to solve the prob-
lem at hand in the best possible and least time-consuming way. 
If you find that after having applied the existing and known methods the results are still unsatis-
factory you have to consider including further problem-specific knowledge. For example: 

• the special initialization of the individuals of the initial population (Section 5.5.1, p.24, 
more info tbd.), 

• the adapted restriction of value domains of the variables, and 
• the development of special operators. 

The first two points should always be applied, in case this knowledge is available. This usually 
leads to a clear reduction of the search domain and consequently to an acceleration of finding sat-
isfactory results. The development of special operators is usually very difficult and has, as far as 
current problems go, not been necessary. 
The methods I have introduced for solving optimization problems and the represented variables 
should make it possible to solve many occurring engineering problems. You need more time to 
become familiar with bigger and more complex problems. The problem has to be examined 
closely during different optimization trials. Once the methods and means have been found to 
solve the problem we have often also obtained new knowledge on the system which was not 
known even to the experts before the optimization. The optimization process examines such areas 
of the system which were not taken into consideration beforehand. This increase in knowledge 
should not be underestimated, neither by the experts of the system to be optimized, nor the system 
engineer who executes the optimization. 
If, after having occupied yourself extensively with the system, you find that the method of evolu-
tionary algorithms seems most appropriate, use it. However, if a problem can be solved with a 
special method (e.g. gradient based methods) this means that a solution will usually be found 
more quickly than by using evolutionary algorithms. However, these special methods often re-
quire system properties which are hardly guaranteed in real systems (rectangular shapes, differen-
tiability, etc.). In these cases, evolutionary algorithms offer a large spectrum of efficient strategies 
and operators for solving the optimization problem. 

www.geatbx.com  GEATbx Tutorial 





 

Index 

 
 
B 

boundaries  5, 11 
boundaries (objexample1)  8 

C 
classification of optimization problem  42 
conversion 

variable representations  17 
correlation between variables  43 

D 
Decreasing system size/dimension  45 
definition of additional parameters  42 
definition of input data  42 
definition of output data  42 
demo 

demofun1  3 
demogeatbx  6 

different representations  19 
dimension of problem  11 
dimensionality of a problem  45 
dividing the optimization problem into multiple 

tasks  45 
E 

Entwicklung spezieller Operatoren  47 
F 

feature selection  18 
G 

genetic algorithm 
simple  24 
steady state  24 

genotype  17 
binary  18 

I 
interactive testing  42 
investigation of system behavior  42 

L 
local minima  43 

M 
MAXONE problem  18 
multi-criteria problems  44 
multi-dimensional visualization  44 
multiple representations  19 

N 
number of variables (objexample1)  8 

O 
objective function  42 

implementation (example)  11 
implementation (objexample1)  7 

special return values  12 
objective function properties  42 
one-dimensional slices  43 
optimization options (objexample1)  7 
output 

graphical - during an optimization  4 
graphical - first obj. function  8 
text - during an optimization  4 
text - end of optimization  4 
text - start of optimization  3 

P 
parameter optimization 

different representations  19 
phenotype  17 

integer  18 
real  18 

problem-specific visualization  42 
R 

reduction of number of variables  45 
representation 

binary  17 
conversion  17 
different  19 
integer  17 
integer and binary  19 
multiple  19 
ordering  17 
permutation  17 
real  17 
real and integer and binary  19 

S 
SAMMON-Mapping  44 
scalability of problem  45 
search space  42 
SGA  18, 24 
simple genetic algorithm  18 
simple genetic algorithm  24 
simulation of several data records  42 
size of a problem  45 
solving optimization problems  41 
steady state genetic algorithm  24 
subdividing an optimization problem  45 

T 
two-dimensional slices  43 

V 
VariableFormat  17, 18 
VLUB  5 

www.geatbx.com  GEATbx Tutorial 



50 Index 

W 
way through solution domain  44 

way through the search space  44 

 
 

GEATbx Tutorial  www.geatbx.com 


	Contents
	List of Figures
	List of Tables
	1  Introduction
	2  Quick Start
	2.1  First demonstration
	2.2  Second demonstration
	2.3  Your first optimization of an own objective function
	2.4  Further Steps

	3  Writing Objective Functions
	3.1  Parametric optimization functions
	3.2  Defining default values of the objective function
	3.3  Optimization of dynamic systems
	3.4  Remark

	4  Variable Representation
	4.1  Conversion between Variable Representations
	4.2  Examples of Variable Representation
	4.2.1 Real --- Real
	4.2.2 Real (phenotype) --- Binary (genotype)
	4.2.3 Integer (phenotype) --- Integer (genotype) or Binary (
	4.2.4 Binary --- Binary

	4.3  Simultaneous Use of Multiple Representations
	4.3.1 Integer and Binary (phenotype) --- Integer (genotype)
	4.3.2 Real and Integer and Binary (phenotype) --- Integer (g


	5  Overview of GEA Toolbox Structure
	5.1  Naming Convention
	5.2  Calling Tree
	5.3  Demo / Startup function
	5.4  Toolbox functions (Predefined algorithms)
	5.5  Evolutionary Algorithm - Main function
	5.5.1 Initialization
	5.5.2 Generational loop of the EA
	5.5.3 Fitness assignment by ranking
	5.5.4 Selection
	5.5.5 Recombination/Crossover
	5.5.6 Mutation
	5.5.7 Evaluation
	5.5.8 Reinsertion
	5.5.9 Migration
	5.5.10 Competition
	5.5.11 Visualization

	5.6  Utility functions

	6  Multi-objective Optimization in the GEATbx
	6.1  Switch on multi-objective ranking
	6.2  Visualization of multi-objective solutions
	6.3  Definition of goals in objective functions
	6.4  Archive - collect and reinsert good solutions

	7  Constraint Optimization in the GEATbx
	7.1  Constraining the variables
	7.2  Functional constraints
	7.2.1 Functional constraints using additional objectives and
	7.2.2 Implementation of functional constraints (larger than,
	7.2.3 Implementation of functional constraints (smaller than
	7.2.4 Implementation of functional constraints (equal to, ==


	8  Data Structures of the GEATbx
	8.1  Chromosomes (genotype / individuals)
	8.2  Phenotypes (decision variables / individuals)
	8.3  Objective function values
	8.4  Fitness values
	8.5  Multiple subpopulations

	9  How to Approach new Optimization Problems
	9.1  Classifying the Problem and Defining the Objective Func
	9.2  Investigating the System Behavior
	One and Two-dimensional Slices (Variational Diagrams)
	Multi-dimensional Visualization
	Decreasing the System Size/Dimension

	9.3  Selecting the Optimization Method
	9.4  Executing and Evaluating Optimizations

	Index

